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Unless otherwise specified, k is an algebraically closed field.

Exercise 1. For n, d ≥ 1, let V (d, n) the k-vector space of forms of degree d in k[X1, . . . , Xn].

1. Compute dimk(V (d, n)) for d ≥ 1 and n = 1, 2, 3. Can you find a formula for arbitrary n?

Set n = 2. Let Li, i ≥ 1 and Mj , j ≥ 1 be two sequences of non-zero linear forms in k[X,Y ] such that Li ̸= λMj

for all i, j ≥ 1, λ ∈ k. Consider Aij = L1 . . . LiM1 . . .Mj , i, j ≥ 0 (if i = 0 or j = 0, the empty product is taken as

1).

2. Show that Aij , i+ j = d, i, j ≥ 0 form a basis of V (d, 2). (Hint: think of dehomogenizing the Aij by setting

Y = 1.)

Solution 1.

1. As we have already seen throughout those exercise sheets, we can compute dimk(V (d, n)) in a combinatorial

way, as dimk(V (d, n)) = {d1 + · · ·+ dn = d | dk ∈ J1, nK} =
(
n+d−1
n−1

)
.

2. We first see that the set of Aij , i + j = d as cardinality d + 1, which is the same as dimk(V (d, 2)). Now,

as for all λ ∈ k, all i, j, Li ̸= λMj , the deshomogenization (Li)∗ and (Mj)∗ does not share any root. Thus,

L1 . . . Ld, L1 . . . Ld−1M1, . . . , M1 . . .Md are linearly independant. (If there is a linear combination, take its

deshomogenisation and evaluate at well-chosen roots to show that the coefficients are all zero).

Exercise 2. Recall properties 1 to 9 of intersection numbers from the course (Thm. 4.5). Prove property 8

using only properties 1 to 7. (Hint: introduce a uniformizer ϖ of OP (F ) and rewrite the factorization G = uϖn,

u ∈ OP (F )× in terms of polynomials in k[X,Y ].)

Solution 2. We need to show that for P a simple point of F , I(P, F ∩ G) = ordFP (G). We reduce to P = (0, 0).

We have 3 distinct cases :

• G(P ) ̸= 0. Then I(P, F ∩G) = ordFP (G) = 0. Indeed, G ∈ OP (F )∗.

• P lies in a common component of F and G. By 1), I(P, F ∩ G) = ∞. Moreover, G = 0 in Γ(F ) since F is

irreducible. So G = 0 in OP (F ), so ordFP (G) = ∞.
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• Otherwise, let L be a line intersecting F transversally at P with ordFP (L) = 1. Let n := ordGP (L). Hence

G = u · Ln in OP (F ), where u = f
g , f(P ) ̸= 0, g(P ) ̸= 0. Now, in OP (F )

gG = fLn

so in k[X,Y ], there exists h such that

gG = fLn + hF

Using 1) and 6) we get I(P, F ∩ G) = I(P, F ∩ gG). Using 7) and again 1) and 6), we get : I(P, F ∩ gG) =

I(P, F ∩ fLn) = I(P, F ∩ Ln) = nI(P, F ∩ L) = n.

Exercise 3. Compute the intersection numbers at P = (0, 0) of various pairs of the following curves:

• A = Y −X2

• B = Y 2 −X3 +X

• C = Y 2 −X3

• D = Y 2 −X3 −X2

• E = (X2 + Y 2)2 + 3X2Y − Y 3

• F = (X2 + Y 2)3 − 4X2Y 2

Solution 3. We use the definition.

• A∩B : OP (A2)/(A,B) = OP (k[X,Y ]/(Y −X2, Y 2−X3+X) = OP (k[X]/(X4−X3+X)) Then, X3+X2+1

is invertible in OP (A2) so that

I(P,A ∩B) = dimk(k[X](X)/X × k[X](X)/(X
3 +X2 + 1)) = dimkk × {1} = 1

• A ∩ C :

k[X,Y ]/(Y −X2, Y 2 −X3) = k[X]/(X4 −X3) = k[X]/X3 × k[X]/(X − 1)

I(P,A ∩ C) = 3.

• A ∩D.

k[X,Y ]/(Y −X2, Y 2 −X3 −X2) ≃ k[X]/(X4 −X3 −X2) ≃ k[X]/X2 × k[X]/(1 +X −X2)

I(P,A ∩D) = 2.

• A ∩ E. E(X,X2) = 4X4 −X6 + . . . . I(P,A ∩ E) = 4 for char k ̸= 2, I(P,A ∩ E) = 6 otherwise.

• A ∩ F . F (X,X2) = −3X6 + 3X8 + 3X10 +X12.

For char k ̸= 3, I(P,A ∩ F ) = 6. Otherwise, I(P,A ∩ F ) = 12.
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• B ∩ C

k[X,Y ]/(Y 2 −X3 +X,Y 2 −X3) ≃ k[X]/(X)

I(P,B ∩ C) = 1

• B ∩D.

k[X,Y ]/(Y 2 −X3 +X,Y 2 −X3 −X2) ≃ k[X,Y ]/(Y 2 −X3 +X,X +X2) ≃ k[Y ]/Y 2

since X2 = −X ⇒ X3 = −X2 = X.

I(P,B ∩D) = 2

• B ∩ E. Since B = Y 2 − X(1 + X2), we see that ordBP (Y ) = 1 and ordBP (X) = 2. Then ordBP (E) = 3 =

I(P,B ∩ E).

• B ∩ F . With the same reasoning, and F = X6 + 3X4Y 2 + 3Y 4X2 + Y 6 − 4X2Y 2 has order 6 in OP (B).

I(P,B ∩ F ) = 6

Exercise 4. Consider the affine curves F = Y −X2 and L = aY + bX + c, where a, b, c ∈ k and (a, b) ̸= (0, 0).

1. Compute the intersection points P ⊆ F ∩ L and their intersection numbers I(P, F ∩ L). Consider s =∑
P I(P, F ∩ L). Give a necessary and sufficient condition for s = 1.

Let us identify A2
k with the affine open subset U1 = {x1 ̸= 0} ⊆ P2

k, where we use projective coordinates x1, x2, x3.

Consider V (resp. L) the closure of V (F ) ⊆ U1 (resp. V (L)) in P2
k.

2. Assume that s = 1. Show that V and L admit another intersection point outside U1 and that the intersection

number (computed in the affine plane U2 or U3) is 1.

3. Same questions with F = XY − 1.

Solution 4.

1. 0 = Y − X2 = aY + bX + c ⇒ aX2 + bX + c = 0. If a ̸= 0, b2 − 4ac ̸= 0, there are two simple points. If

b2 − 4ac = 0 there is a double point.

If a = 0 there is one simple point.

Hence

s = 1 ⇐⇒ a = 0

2. If a = 0, take homogenisation Y Z −X2, bX + cZ. Then deshomogenize in U2, get 0 = Z −X2 = bX + cZ ⇒
bX + cX2 = 0 which has 1 or 2 simple points, depending on c (since b ̸= 0).

3. We have

k[X,Y ]/(XY − 1, aY + bX + c) = k[X±1]/(bX2 + cX + a)
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So if b ̸= 0, this ring is 2−dimensional, and there are two simple points or one double points depending on

the discriminant.

If b = 0, the ring is 1−dimensional.

So again, s = 0 ⇐⇒ b = 0.

Then, V̄ = VP (XY − Z2) and L̄ = VP (aY + cZ). Deshomogenization in {Y ̸= 0} yields

k[x, z]/(x− z2, a+ cz) ≃ k[z]/(a+ cz)

which has dimension 1.

Exercise 5. Let F be an affine plane curve. Let L be a line that is not a component of F . Suppose that

L = {(a+ tb, c+ td), t ∈ k}. Define G(T ) = F (a+Tb, c+Td) and consider its factorization G(T ) = ϵ
∏

i(T −λi)
ei

where the λi are distinct.

1. Show that there is a natural one-to-one correspondence between the λi and the points Pi ∈ L ∩ F .

2. Show that, under this correspondence, I(Pi, L ∩ F ) = ei. In particular,
∑

i I(Pi, L ∩ F ) ≤ deg(F ) (see for

instance exercise 4).

Solution 5.

1. We have t = λi ⇐⇒ F (a+ λib, c+ λid) = 0 so that {Pi = (a+ λib, c+ λid)} = F ∩ L.

2. Let FL = dX − bY − ad+ bc be the function defining L. k[X,Y ]/(F, FL) = k[T ]/G =
∏

i K[T ]/(T − λi)
ei so

that I(Pi, F ∩ L) = ei. We used a ring isomorphism given by X 7→ a+ bT , Y 7→ c+ dT .
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