Algebraic curves

Solutions sheet 10

May 22, 2024

Unless otherwise specified, k is an algebraically closed field.
Exercise 1. For n,d > 1, let V(d,n) the k-vector space of forms of degree d in k[X1,...,X,].
1. Compute dimg (V' (d,n)) for d > 1 and n = 1,2,3. Can you find a formula for arbitrary n?

Set n =2. Let L;, i > 1 and M;, j > 1 be two sequences of non-zero linear forms in k[X,Y] such that L; # AM;
for all 4,5 > 1, A € k. Consider A;; = Ly...L;My...Mj, 4,5 >0 (if i =0 or j = 0, the empty product is taken as
1).

2. Show that A;;, i+j =d, ¢,j > 0 form a basis of V(d,2). (Hint: think of dehomogenizing the A;; by setting
Y =1)

Solution 1.

1. As we have already seen throughout those exercise sheets, we can compute dimg(V (d,n)) in a combinatorial
way, as dimy, (V(d,n)) = {d1 +---+d, =d | d, € [1,n]} = <n+d—1).

n—1

2. We first see that the set of A;;, i + j = d as cardinality d + 1, which is the same as dimg(V(d,2)). Now,
as for all A € k, all 4,5, L; # AM;, the deshomogenization (L;), and (M), does not share any root. Thus,
Ly...Lg, Ly...Lg_1M, ..., My ... My are linearly independant. (If there is a linear combination, take its

deshomogenisation and evaluate at well-chosen roots to show that the coefficients are all zero).

Exercise 2. Recall properties 1 to 9 of intersection numbers from the course (Thm. 4.5). Prove property 8
using only properties 1 to 7. (Hint: introduce a uniformizer w of Op(F) and rewrite the factorization G = uw™,
u € Op(F)* in terms of polynomials in k[X,Y].)

Solution 2. We need to show that for P a simple point of F, I(P,F N G) = ord5(G). We reduce to P = (0,0).

We have 3 distinct cases :
e G(P)#0. Then I(P,FNG) = ordg(G) =0. Indeed, G € Op(F)*.

e P lies in a common component of F and G. By 1), I(P, FNG) = oco. Moreover, G = 0 in I'(F) since F is
irreducible. So G =0 in Op(F), so ord5(G) = co.



e Otherwise, let L be a line intersecting F transversally at P with ord5(L) = 1. Let n := ord%(L). Hence
G =u-L" in Op(F), where u = L, f(P) #0, g(P) # 0. Now, in Op(F)

gG = fL"

so in k[X,Y], there exists h such that
gG = fL" + hF

Using 1) and 6) we get I(P,FNG) = I(P,FNgG). Using 7) and again 1) and 6), we get : I(P,F NgG) =
I(P,FNfL")=I(P,FNL") =nl(P,FNL)=n.

Exercise 3. Compute the intersection numbers at P = (0,0) of various pairs of the following curves:

e A=Y — X2

B=Y?-X3+X
e C=Y?2-X3
e D=Y?- X3 X?
o E=(X?+Y??+4+3X% —-Y?3
o F=(X?2+4+Y?)3 -4X2Y?
Solution 3. We use the definition.

e ANB: Op(A?)/(A,B) = O0p(k[X,Y]/(Y —X2Y? - X3+ X) = Op(k[X]/(X* - X3+ X)) Then, X3+ X2+1
is invertible in Op(A2) so that

I(P,AN B) = dimy,(k[X](x)/X x k[X]x)/(X? + X? +1)) = dimgk x {1} = 1

e ANC :
KX, Y]/(Y — X2, Y? - X3) = k[X]/(X? — X3) = k[X]/X3 x EK[X]/(X — 1)
I(P,ANC) =3.
e AND.
KX, Y]/(Y — X2 Y2 - X3 - X?) ~ k[X]/(X* = X3 — X?) ~ k[X]/ X2 x E[X]/(1+ X — X?)
I(P,AND)=2.

e ANE. BE(X,X?)=4X*—- X5+ ... I(P,ANE) =4 for char k # 2, (P, AN E) = 6 otherwise.

e ANF. F(X,X?)=-3X%+3X%+3X10+ X'2.
For char k # 3, I(P,ANF) = 6. Otherwise, I(P,ANF) = 12.



e BNC

KX, Y])/(Y? - X2+ X, Y? - X3) ~ k[X]/(X)

I(P,BNC) =1

e BND.

EX,Y)/(Y?2 - X34+ X, Y? - X3 - X?) ~E[X,Y]/(Y? - X? + X, X + X?) ~k[Y]/Y?

since X2 = -X = X3 = -X?=X.
I(P,BND) =2

e BNE. Since B =Y? - X(1+ X?), we see that ord2(Y) = 1 and ord2(X) = 2. Then ord3(E) = 3 =
I(P,BNE).

e BN F. With the same reasoning, and F = X% + 3X4Y?2 4+ 3Y*X? + Y5 — 4X2Y? has order 6 in Op(B).
I(P,BNF)=6

Exercise 4. Consider the affine curves F =Y — X? and L = aY + bX + ¢, where a,b,c € k and (a,b) # (0,0).

1. Compute the intersection points P C F N L and their intersection numbers I(P,F N L). Consider s =
> pI(P,FNL). Give a necessary and sufficient condition for s = 1.

Let us identify A? with the affine open subset Uy = {z; # 0} C P2, where we use projective coordinates 1, 2, 3.
Consider V (resp. L) the closure of V(F) C Uy (resp. V(L)) in P%.

2. Assume that s = 1. Show that V and L admit another intersection point outside U; and that the intersection

number (computed in the affine plane Uy or Us) is 1.

3. Same questions with F' = XY — 1.
Solution 4.
1.0=Y -X2=aY +bX +c=aX?+bX +c=0. If a # 0, b> — 4ac # 0, there are two simple points. If
b? — 4ac = 0 there is a double point.
If @ = 0 there is one simple point.

Hence
s=1 <= a=0

2. If a = 0, take homogenisation YZ — X2, bX + cZ. Then deshomogenize in U, get 0 = Z — X2 = bX +cZ =
bX + cX? = 0 which has 1 or 2 simple points, depending on ¢ (since b # 0).

3. We have
E[X,Y]/(XY —1,aY +bX +¢) = k[XF']/(bX? + cX +a)



So if b # 0, this ring is 2—dimensional, and there are two simple points or one double points depending on

the discriminant.
If b = 0, the ring is 1—dimensional.
So again, s =0 < b=0.

Then, V = Vp(XY — Z?) and L = Vp(aY + c¢Z). Deshomogenization in {Y # 0} yields
klz, 2]/ (x — 2%, a + cz) ~ k[2]/(a + cz)

which has dimension 1.

Exercise 5. Let F' be an affine plane curve. Let L be a line that is not a component of F. Suppose that
L ={(a+tb,c+1td), t € k}. Define G(T) = F(a+Tb,c+ Td) and consider its factorization G(T') = e[ [,(T — ;)
where the \; are distinct.

1. Show that there is a natural one-to-one correspondence between the \; and the points P; € LN F.

2. Show that, under this correspondence, I(P;, L N F) = e;. In particular, >, I(P;, LN F) < deg(F) (see for

instance exercise 4).

Solution 5.
1. We have t = \; <= F(a+ Aib,c+ \id) = 0 so that {P; = (a + \jb,c+ \d)} = FNL.

2. Let F, = dX — bY — ad + bc be the function defining L. k[X,Y]/(F,Fr) = k[T|/G =[], K[T]/(T — X\;)¢* so
that I(P;, FN L) =e;. We used a ring isomorphism given by X — a + b7, Y — ¢+ dT.



